2022/2023

K-nearest
neighbors
kNN

Apprentissage Supervise

© Apprentissage automatique = apprendre un modele
formel a partir de données observées

X — y
“Chien”
“Chien” ! l
“Chat”
#} “Chien _

Apprentissage Supervisé Utilisation finale

La machine apprend a partir de milliers d’exemples x, y

Rappel : Schéma de I' Apprentissage
Supervisé

Dataset (x,y) 1. Dataset
y : Target
% |5 X, x : features
Nl i . L 2. Modeéle
(2) x?’ J‘:gz) J"(‘z) paramétres
@ | x| x® NS 3. Fonction Codt
= xgx;) x;;) x,(,"" 4. Algorithme de
minimisation
Moi, je prédis y Moi, je mesure les Moi, je minimise les

en fonction de x erreurs entre y et les erreurs
prédictions

Le Machine Learning consiste a créer un modele a
I'aide de données pour permettre a un ordinateur
d’apprendre a effectuer une tache spécifique.

' iSi Neural
Linear Decision Random (NN UM ; k
Regression Tree Forest etwor

oO /L ’ OC &7 \
% -‘:“L.f‘\ 1 \ : .'.: ,:j-:'
/;\ 00 LA

00 0 <

'algorithme des K plus proches voisins ou K-nearest
neighbors (kNN) est un algorithme de Machine Learning qui
appartient a la classe des algorithmes d’apprentissage
supervisé simple et facile a mettre en ceuvre qui peut étre
utilisé pour résoudre les problemes de classification et de
régression.

< & e
@

Data Set

©
@
1.0 3 ®
k)
@
0.5 . @
. @
® ®
0.0 . .
L7
@
@
I
-0.5 .

|-
k2l

K= 1.0 e o
S-NN E

0.5 @

d &
w
0.0 L]
¥ [
(]
»
-0.5 @

KNN: Principe

.
- il Prendre les K voisins les plus proches selon la
Sélectionner l.e .nombre PP ol
K de voisins
4-
-2- Parmi ces K voisins, compter le nombre de
Calculer la distance points appartenant a chaque catégorie.

5

n n
Z |z — yil \/ Z(x,- -y) | Attribuer le nouveau point a la catégorie la plus
i=1 1

Euclidienne

i= présente parmi ces K voisins.

Manhattan

K: Hyper parametre
Choisir le K pour lequel la classification sera la meilleure

Error Rate Value

0175
000 o

0150

60 00 o 00
0125 i3

0100 o 000000 o

Mean Error

0.075

0.050

0000 00
0025

0.000 0000000000000

0 5 10 15 N 20 % 30 3 40
K Value

Afin de mesurer les performances d’un modele de
Machine Learning, on utilise généralement la Confusion
Matrix ou matrice de confusion

Une Confusion Matrix est un résumé des résultats de
prédictions sur un probleme de classification. Les
prédictions correctes et incorrectes sont mises en lumiere et
réparties par classe. Les résultats sont ainsi comparés avec
les valeurs réelles.

Maftrice de confusion

The Cm&s‘non M akyi

ACTURAL-
i~ = <

Pos\T\vE

Il faut bien comprendre les quatre terminologies
principales : TP, TN, FP et FN. Voici la définition précise de
chacun de ces termes :

TP (True Positives) : les cas ou la prédiction est positive, et
ou la valeur réelle est effectivement positive. Exemple : le
Test COVID19 est positif et |la personne est bel et bien
malade.

TN (True Negatives) : les cas ou la prédiction est négative,
et ou la valeur réelle est effectivement négative. Exemple : :
le Test COVID19 est négatif et |la personne n’est
effectivement pas malade.

Maftrice de confusion

+«FP (False Positive) : les cas ou la prédiction est positive,
mais ou la valeur réelle est négative. Exemple : : le Test
COVID19 est positif et |la personne n’ est pas malade.

+FN (False Negative) : les cas ou la prédiction est négative,
mais ou la valeur réelle est positive. Exemple : : le Test
COVID19 est négatif et la personne est malade.

Matrice de confusion: Exemple

Recuitat dlune détection de Bradley Coogper

Nous avons donc y = [0,0,0,0,0,0,0,0,0,0,1] et v pred = [0,0,0,0,0,0,0,0,0,1,1]

Predicted class |
0 1
0 9 1
. true negative (tn) false positive (fp)
True class
1 0 1 ~
\ . ags
false negative (fn) true positive (tp)

Matrice ce confusion pour la détection de Bradley Cooper

ACCuracy

© laccuracy permet de connaitre la proportion de bonnes
prédictions par rapport a toutes les prédictions. Lopération

est simplement :
Nombre de bonnes prédictions / Nombre total de prédictions

tn + tp
th+fp+fn+tp

Accuracy =

< Dans I'exemple de Bradley Cooper :

Accuracy = i = 0.9

11

La précision correspond au nombre d’exemples
de correctement attribués a la classe i par rapport au
nombre total d” exemples prédits comme appartenant a la
classe i (total predicted positive).

tp
tp + fp

Precision =

La précision permet de mesurer le colt des faux
positifs, c’est-a-dire ceux détectés par erreur. Si 'on cherche
a limiter les faux positifs, c’est cet indicateur que |I'on va
chercher a minimiser.

1
2

Dans I'exemple de Bradley Cooper : Precision = = 0,5

Rappel (recall)

© Lerappel correspond au nombre
d’exemples correctement attribués a la classe i par rapport
au nombre total d’exemples appartenant a la classe i (total

true positive).

t
Recall = P
tp + fn J
© Lerappel permet d’estimer combien d’exemples

réellement positifs le modele a reconnu par rapport au
nombre de fois ou il aurait dii reconnaitre

< Dans I'exemple de Bradley Cooper : Recall = T = 1

Score

© Le Score combine subtilement la précision et le rappel. Il
est intéressant et plus intéressant que 'accuracy car le
nombre de vrais négatifs (tn) n’est pas pris en compte

precision * recall 9 (tp/(tp+fp)) * (tp/(tp+fn)) B
(precision + recall) tp/(tp+fp) + tp/(tp+fn)

Score = 2

| &Dans I'exemple de Bradley Cooper:

KNN: Pratique

Reconnaissance de chiffres manuscrits

Q- mz>rwnr=
ONad®mInwe
S =M=
R T RS RN |
O—=—9 % TV
Q~-xmF e
O~ mMI N\
QAN OGO D
QO —AOI>r=ad
OVZZU.SQ
QN YN T VI
N—F T wvmwd
S~ MNMD>HS
S—=—AMXin9
Q—%MNYUNS
O~XMI v

~S &
N ©e O~
N O O
th oo
N\ o o
~ O o
=~ G &
cC 2 T
[RN o
S
~ % o
[~ % o
.~ W o
D O
~w
B O O~

KNN: Pratigue

d Importer les librairies

import numpy as np

import pandas as pd

import matplotlib.pyplot as plt

from sklearn.model selection import train_test_split|
from sklearn.neighbors import KNeighborsClassifier
from sklearn.datasets import load digits

from sklearn.metrics import confusion matrix

#Charger le dataset digits
digits = load digits()
X, vy = digits.data, digits.target

Diviser le dataset en jeu d'apprentissage et je de test
X_train, X_test,/y train,y test = train_test_split(X,y,test_size=0.2)

fCréer le modéle knn
knn = KNeighborsClassifier (n_neighbors=7)
knn.fit(X_train, y train)

fle taux de précision
score = knn.score(X_test, y test)
print('Score: %f' % score)

KNN: Pratique

#Tester kK de 1 a8 20

neighbors = np.arange(1,21)
train_accuracy snp.empty (len(neighbors))
test_accuracy = np.empty(len(neighbors))

for i,k in enumerate (neighbors):

knn = KNeighborsClassifier (n_neighborswk)
knn.fit(X_train, y_train)

train_accuracy(i)] = knn.score(X_train, y_train)
test_accuracyl(i] = knn.score(X_test, y_test)

print (test_accuracy)

[(0.98222222 0.98444444 0.98444444 0.98444444 0.98444444 0.92666667
0.98444444 0.984444449 0.98 0.98 0.97555556 -

c.98 0.97777778 0.97333333 0.97555556 0.97555556 0.97555556
0.97111111 0.97333333)

#Visualisation taux de précision (Test)

plt.plot (test_accuracy, ‘o-*)

pPlt.title('k-NN précision par nombre de voisins')
Plt.xlabel (‘Nombre de wvoisins®)
plt.ylabel (' Précision’)

plt.show()

k-NN précision par nombre de voisins

0986
0584
0982
0980
Qon
0976
0974
0972

00 2s 50 75 100 125 150 17%
Nombre de voisins

KNN: Pratique

Pour k=6

y_pred=knn,predict (X_test)

fMatrice de confusion
cm = confusion matrix(y test, y pred)

cm

array(((47?, 0, 0, 0 O O, O, 0, 0, 0],
(o, 4, 0, 0, 0 0, 0, 0, 0, 0],
(o, 0,27, o, 0, 0, 0, 0, 0, 0],
(o, o, 0, 4, 0, 1, 0, 0, 0, 0],
(o, o, 0, 0,5, o0, 0 0, 0, 0],
(o, o, 0, 0, 0,48 0, 0 0, 2],
(o, o, 0, 0, 0, 0,47, 0, 0, 0],
(o, o, 0,0 0, 0, 0, 0, 58, 0, 0],
(o, 2, 00 0,0 0, 0, 0, O, 39, 0],
(o, o, 00 0, 0, 0, 0, 0, 1, 34)), dtype=inté4)

np.bincount (y_test)

array((47, 48, 27, 41, S5, 51, 47, 58, 41, 35), dtype=inté4)

